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ABSTRACT

- Large, complex computer simulation models can require
prohibitively costly and time-cénsuming experimental programs to
study thelr behavior. Therefore we may want to concentrate the
analysis on the set of "most important" factors (i.e., input
variables). Factor screening experiments, which attempt to
identify the more important variables, can be extremely useful in
the study of such models. The number of computer runs available
for screening, however, is usually severely limited. 1In fact;
the number of factors often exceeds the number of available runs.
In this papek we present a survey of Eupersaﬁurated'designs'for
use in'factor screening experiments. The designs considered are:
random balance, systematic supersaturated, group screenihg,
modified group screening, T-optimal, R-optimal, and search
designs. We discuss in general terms the basic techrigque,
advantages, and disadvantages of each procedure surveyed.

1. INTRODUCTION

Lérge-scal% eoessuter simuiation models, because of their
size and running tige, can require prohibitively costly and
time-consumirg experimental programs to study their behavior.

‘Often 1t 1a'antic1pated, however, that only relatively few

factors (i.e., input variables) will have ma jor effecta...
Therefore, one may want to conduct an efficient preliminary
experiment to determine the‘subset_of "most important® factors.

© Once the most important factors have been identified, subsequent

experimentation can focus on these particular factors, thereby
eliminating-gxperimentationiQith relatively unimportant factors
which can needlessly consume resghr¢e;.

In some situations, of qoursé, ﬁrior information eoﬁderning
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the ezperimental factors is available and can be used to ldentify
those factors which are most likely to be of importance.

Although the use of prior information can be beneficial to the
séreening process, in this paper we assume that there is no prior
information available, This would not exclude, for example,
situations in which prior information is available on the
importance of some of the factors, and it is desired to examine :
the remaining factors in a scneenihg experiment.

The function of a factor screening experiment is t6 sort the
factors into two groups.  One group consists of the important
factors which are judged worthwhile to investigate further, while
the other consists of the remaining factors classified as

" unimportant. 1In generaI; in screening experiments we want (a) to

detect as many important factors as possible, (b) to declare
important as few unimportant factors as possible, and (c¢) to
expend as few computer runs as possible. 3ince these are
conflicting objectives, one must generally trade off how many
runs a screening method requires against how accurately it
classiflies factors. |

The screening problem can occur in two general situations.

' These are the unsaturated/saturated and the supersaturated
‘situations. 1In the unsatura;ed/saturatgd situation, one.can

afford to invest more runs than there are factors.’ In the
superéaturated situation, the number of factors equals or exceeds
the number of runs availébie for séreening. _Although screening
can be done more effectively in the unsaturated/saturated
situation, the supersaturated situation is a common and practical

.siiuatipn‘in'the analysis of large-scale simulation models.

Here, once again, design economy is the primary consideration.

Superagturated.design procedures are not custgﬁaﬁily

discussed in textbooks on experimental design, and there are few

o
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examples of such experiments in the statistical or simulation
literature. This paper presents a survey of supersaturated
designs for use in factor screening, with application to
large-scale simulation models. The designs ccnsidered are: (i)
rahdom'balance designs, (ii) systematic supersaturated designs,
(iii) group screening designs, (iv) modified group screening
designs, (v) T-optimal designs, (vi) R-optimal designs, and (vii)
search designs. Our intent is to provide a broad overview of
supersaturated screening methods and to discuss in general terms
the basic technique, analysis procedures, advantages, and
disadvantages of each mcthod surveyed. Appropriate references
are provided if further information is desired.

2. A SCREENING MODEL

For the purpose of detecting the factors which have major
effects, it generally suffices to assume the first-order model

K

v J=1 .

where vy is the value of the responee (1.ei.'output-variabie) in
the ith simulation run, K is the total number of factors, ‘each of
thich is at. two normalized levels (coded +1), x; 4 is. the level of
the jth factor during the ith simulation run, Bo is a eonstant
component common to all observationns, 8 3 (321 i3 the (1inear)

effect of the jth factor, and e1 is a random error component with

mean 0 and unknown variance o°
A common interpretation of this model 13 that 1t repreaenta
a first-order Taylor series approximation to the true

. relationship between the output ¥y and the normalized input ~

s . . o
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variables Xq9 Xy sesy Xpe Moreover, the coefficients 81, 82,

so ey BK can be reliated to the sensitivity of the output variable
yiAto changes mude in the input variables, at least in the
vieinity of their nominal values. Ordinarily this model would be

'used over a relatively small regicn of the factor space.

3. SUPERSATURATED SCREENING DESIGNS

Screening designs can be classified as either "fixed" or
"sequential" designs. In a fixed, or nonsequential, design, the
factors are screened based on a glven set of observations (i.e.,

- computer runs). In a sequential design, results from a
first-stage design are usea to provide information on how to set

up the design used in the next stage, and so on. All of the
designs considered in this paper are fixed, with the'exception of
group screening designs which are sequential.

3;1 Random Balance Designs
Random balance (RB) designs,'introguced'ﬁy Budne (1959a,

1959b) and Satterthwaite (1959), were discussed at length by
Anscombe (1959) and Youden et al. (1959). See also Dempster

(1960), Mauro and Smith (1984), and Mauro and Burns (1984).

In a two-level (11) RB design, each column of the design.
.patrix coﬂsi;ta af N/2 +1's and N/2 «1's where N, an even number, '
denotes the tctal number of uns to be made. The +1's and -1's
in each column are assigned randomly, making all possible
combinations of N/2 +1's and N/2 -1's equally likely, with each
column receiving an 1ndependeht randomization, .

The principal advantage of the RB method is its flexibility. .

The nuhber of runs N can be selected 1ndependent1y of the number
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oflféctors'K. No mathematical restriction or relationship,
except that N be an even number, need exist between N ana K. A
second advantage is that RB designs are very easy to prepare for .
any combination of N and K.  This latter advankage can be an
important consideration when K is large.

The major disédvantage of RB designs is that confounding'is
random. Anscombe (1959) has written:

The fact that the degree of nonorthogonality or unbalance is
random can be made the basis for an objection to the whole
'notion of random balance designs. Such designs may work
well on the average, but should I trust to one on this
occasion?

Indeed, the lack of control over the confounding in RB designs
has been a controversial aspect since such experimentation was
first proposed.

‘Another disadvantage of RB designs is that there 1s no
generally accepted or established method of analysis for these
designs. In fact, the problem of analysis is characteristic of
suwersaturatea designs with irregular confounding patterns and is
not peculiur to the RB metnod. The simplest analysis approach is

‘to consider each factor separately, ignoring all other factors,
. and apply some standard analysis téchnique Such as an F-test.

More sophisticated analyczsis methods which can, be used include
variable selection procedures such as least squares stepwise and
stagewiae,regrgasion (see, for example, Draper ann Smith 1981).

The simple least squares estimator of 81 obtained by
ignoring all other factors is gIVen by

where §+3($-J) is the average value of the response over ihg N/2

5
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: where'tg = [ B2,

runs at the +1(-1) level of the jth facto-. Let y denote the Nx1

vector (yi,yz,...,yn)' of responses and'ii denote the Nx1 vector
(x1j’x2j""’xNj)" Further, 1et.§;[l,§1,52,...,§xl, where 1
designates an Nx1 vector of +1's. In an RB design, the matrix X
is, by construction, stochastic (except, c¢f course, for the
initial column of +1's). Assuming that X and the e, are

1ndependent; it is easily shown that conditional on X,

E(BJIK) =~EJ + (8B, xlxj)/N ' ()
143
and
vcéjyg) = o2/N., (2)

The conditional mean square error {(MSE) of i is then

MSE(BJIE) = o2/N + (I Bixixj) 22 .
' 1#3

Uneonditibnally, 1t‘caﬁ be shown that
EBy) = 8y D (3)
and
V(BJ) = 1) /(N—l) N '}

méJ

Qs Box (1959) poin«ed out, equations (1) and (2} refer to
the behavior of the estimates for repetitions of a particular RB
dgsign. Equattona (3) and (4), on the other hand, ‘refer to the’

N,
\




behavior of the estimatet if we avefage over the random choice of
RB designs. Box noted that although éj is_unconditionally
unbiased, the effect of the conditional bias term in (1) is
transferred to the unconditional variance. of ﬁj'which now
contains terms from every other factor present. Ccnditionally,
therefore; one pays the prige of having a biased estimator;
unconditionally, one pays the price of having a potentialiy
inflated variance. From eithér’point of view, RB sampling would
seem inefficient for detecting all but the very large effects.
In a study of the RB method, Mauro and Burns (1984) derived
formulas for determining (unconditional) power probabilities of
detecting factor effects wnen separate F-tests are used as the
method of analysis. o

Some further results regarding the use of separate F-=tests
are that for 1i#j ’

cov(éi,ﬁd).= eiej/(N-1)
and corr(éi.éj) ? Bi?J((Ti*oz)(Tg*qz)‘t» (3)

 The correlation expressed in eqmation.(S)Ais a measure of the
confounding between B, and EJ. It is intgresting to note that an
increase in N doeys not reduce the confounding in an RB design
where simple least squares is used as the estimation method. As
indicated by (5), the confounding between 31 and 33 ta primarily
a runction of 02 and the magnitudes ‘of the eftects in the model.

It. should also bé noted that more sophisticated analysis
techhiques such as variable selection procedures are not immune
to the adverae effects of the 1rregu1ar confounding: patterns
characteriatic of supersaturated designs. It is well known that
multicollinesrity in the predictor variables can cause serioua
computational and statistical difticulties. See, for example,




Belsley, Kuh, and Welsch (1930) and Silvey (1969). Furthermore,
sequential selection procedures have the added problem that i% is
difficult to control the true overall significance level (i.e.,

- the probability of declaring important a negligible factor) of
such procedur=es.

3.2 Systematic Supersaturated Designs

~ Because of the random confounding that occurs in RB designs,
Booth and Cox (1962) introduced balanced (j.e., an equal number
of +1's and -1's in each design columh) two-level designs which_'
systematically attempt to minimize confounding. Since not all
design columns can be orthogonal when N < K, Booth and Ccx
constructed designs, which they tehmed.systematic supersaturated
(SS) d«signs, .hat minimize maxi#jleijl where Gy X X ge For two
or more designs with the same minimax value, the preferred SS
design is the one wnich minimizes the number of pairs of columns
attaining the minimax value.' ' ‘ ’

The cosine of the angle eij’ °<613<"' between any two column
vectors, Xy and xJ, is defined by

L Y172,

cos eiJ = c,J/(c11 T °1J/N

The vectors x, and x; are orthogonal if cijeo‘or,'in other wokds,;
if the cosine of the angle between them is zero. The absolute

value of the inner product, therefore, is a measure of the

orthogonality of any two design columns. In a certain sense,

' then, 3S designs are constructad as nearly orthogonal as
possible. ' ‘ :

' Bcothrand Cox tabulated their SS designs for the fbllowing
seven combinations of (N,K): (12,16), (12,20), (12,24), (18, 24),
(18,30), (18,36), ggg/jzu,30). ‘As they pointed out. designs for




intermediate values of K can be formed by dropping the final
columns from the next largest SS design. The designs indicated
above were obtained with the aid of an iterative computer search
procedure, since it was impracticable to enumerate all possible
designs and select the best.

The principal advantage of SS designs is that they attempt
to minimize the confounding which inevitably occurs when N < K.
The principal disadvantage is that these designs are not readily
available for combinations of N and K other than those already
tabulated. Furthermore, the time and expense needed to write and
te run a compute} program for the generation of these designs may
be prohibitive, especially if K is‘large.. Also, as in RB
designs, there remains the difficulty that the analysis of SS
designs is complicated by the confounding of factor effects.

A quick comparison of SS with RB designs can be made based
on an analysis of the variance of the inner product of two
columns chosen at random from the design. For RB designs, for ‘
.example, the variance of xixJ for any i and j ‘is N /(N=1), Booth-,
and. Cox made such a comparison for the seven SS designs they
derived and observed that SS designs,are substantially better
than RB designs when N > K/2. As would be expected, SS designs
lose their advantage when N is small relative to K.

3.3 Group Screening Desigﬁe

In a group screening {GS) design we parfition the individual
factors into groups of suitable sizes and then test'the3e~grou§s,
'by considering each as a single 'factor. The level of a |
"group-factor" is defined by assigning the same level, either +1
or -1, to each: component factor. Because the number of
group-facpore i3 generally much smaller than the.original number
_ of fact rs3, we can usually study the group-factors in a-standard.




orthogonal design such as a Plackett-Burman (PB) design. PB
designs are two-level (+1) orthogonal designs for studying up to
K=4m-1 factors in N=U4m runs. PB designs were tabulated by
Plackett and Burman (1946) for N<100 and are minimal in the
number of runs required to achieve orthogonality. -When N is a
power of two, PB designs are the same as resolution III 2K-pP
fractional factorial designs (see Box and Hunter 1961).

The 'grouping and testing process can b: .epeated for any
number of stages. In each stage, however, we repartitior into
smaller groups only those groups determined to be significant in
the previous stage.. Further, we hold at a constant level any
factor not included in a subsequent stage so not to bias. any of
the later-stage group-factof estimates. In the final stage of
screening, we test factors individually (i.e., the group size is
unity). '

GS designs were introduced initially by Watson (1961), who
considered secreening in two stagés. The GS method was then
generalized to wore than two stages by both Li (1962) and Patel
(1962). For an exceilent overview of GS designs, the reader may
¢onsult Kleijnen (1975).

There are two major advantages to GS designs. The first of
these is'that we can to a certain extent control the confounding
pattern, since factors within a group are combletely confounded
and factors in different groups are rot confounded. Secondly,
the'grbuping process reduces the dimensionality of the model and
enables the use of orthogonal main effect designs, such as PB
designs, to test the significance of group-factors. Moreover,
such designs can be analyzed by the usual analysis of variance
procedures: for factorial experiments.

There are two major disadvantages of the GS method. The

10




first of'these is that the total number of runs required by a GS
procedure is not fixed, since the number of group-factors carried
over from stage to stage (when one progresses beyond the first
stage) is random. Thus, in a GS strategy, one generally does not
know prior to experimentation the exact total number of runs that
will be expended. A second major disadvantage is that the
optimal choice of group sizes and signifiéance levels used in tne
various stages of group screening requires prior information on
'certain propcrties of the underlying model,'such as the '
proportion of important effects. The pnobiem of selecting
optimal two-stage group screening designs has been discussed by
Mauro (1984) and Patel and Ottieno (1984).

Another consideration in the use of the GS approach is that
important effects may cancel within a group. As a simple
example, consider twb factors which have effects that are
negétives or near negatives of each other. If these two fzctors
are the only important factors in a'group, their effects will
essentially cancel and théir combined effect may be maskec bty
experimental error. Cancellation of effects cannot occur, of
course, if factor levels are assigned a priori so that all
effects are in the same direction. See Mauro (1984), Mauro and
Burns (1984), and Mauro and Smith (1982) for a more detailed
analysils of the effects of cancellation on ‘the performance of
two-stage GS desigﬁs. S

3.4 Modified Group Screening Designs .,

Because an analyst might be reluctant to use a scraening
strategy in which the.ﬁotal number of rung—cannot be -
' predetermined, Mauro and Burns (1984) suggested a modified GS
procedure in two stages where the total number of runs can be
fixed prior to experimentatioh; Consider a two-stage GS strategy
where the anélyst decides beforehand not only on the nuaber of v

LR
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groupractors which will be iesﬁed in the first stage but also on
the number of group-factors, say m, which will be carried over to
the second stage. After the first-st#gé experiment, the m
group-factors with the largest estimated effects are determined
and their component factors tested individually in a second-stage
experiment. In this stfategy, the number of first- and
second-stage runs are both predetermined{

. The advantages of modified GS designs are the same as for
regular GS designs. The same cisadvantages also'apply except of

"course that the total number of runs is fixed in modified GS and

is random in regular GS. An additional disadvantage of modified
GS is that the prespecification of m, the number of group-factors
to be carried over to the second stagé, may be'inadequate in
order to reasonably insure that all of the apparently significant
groﬁps reach"thg second stage. E

Further research and practical experience on»moqified GS
designs is needed. However, preliminary indications are that the
performance of inis strategy is comparable to that of regular

‘two-stage GS if the proportion of important effects is not too

large.
3.5 T-Optimal Designs

In a two-level (+1) design, the inner product between,ény
two design columns is a measure of their orthogonalit&i 35 -
designs, which were discussed in Section 3.2, ére,consﬁructed
with the objective of minimizing the maximum absolute inner

~ product between any two distinct design columns. 0One can define

other criteria, hqweéer, for measuring the optimality of a

supersaturated design.

We define a design to be T-optimal in a given clasé of

12
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designs if it minimizes, over all designs in that class, the
trace of (5'5)2, where X is as defined previously, Equivalentiy,
a design is T-optimal if it minimizes the sum of squared inner
products of all pairs of columns in X. Thus, the columns of X
are, in a certain sense, as nearly orthogonal as possible.‘

The principal disadvantage of supersaturated T-optimal
designs is that rules for their. general construction- have not
been developed, nor have any such designs been tabulated within
the class of two-level (+1) designs. HoweVer, in studies where
the constant term BO is knowp or an advance estidate is
available,. rules for the construction of supersaturated T-optimal
designs can essentially be found in Merris and Mitchei1,(1983)5

" who derived such designs in the process of obtaining their

trace-L optimal designs for detecting two-factor interactions. A
second disadvantage is that, as in RB and SS designs;fthe
analysis of T-optimal designs is made difficult by,the;
confounding of factor effects.

3.6 R-Optimal Designs

In matrix terms, the screening model introduced ih'Section 2
can be expressed as

Y = Xgve

where y 1s an Nx1 vector of responses. B (80'81""'8K)' is a
- (K+1)x1 -vector of parameters, [ is an Nx1 vector of random error

terms with mean 0 and variance 02. and X is an. Nx(K+1) matrix of
coefficients of the parameters 80'51""'8K‘ Ve shal; assume
that N ¢ K and that X is of rank N. For simplicity in the
following discussion, we sha;l also assume that 02;0, so that
y=X8.

13
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Consider, then, the supersaturated system »f linear

'equations y=XB. Since N < K, this system is underdetermined and

therefore possesses infinitely many solutions. It can be shown,
however, that the solution which has minimum length is given by

By = X (xxH7ly o (6)

Because ém'is the minimum length solution, it insures, in some
sense, that factors are treated equally in the estimation
process. For example, if two or more factors are completely
confounded, the effect of each factor will be estimated by the
average of their combined effects,

Substituting 1:3@ into (6), we obtain, in terms of the true.
8, | | -

where R = 5'(55')'13. We observe that R is a (K+1)x(K+1)
symmetric idempotent matrix of rank N and is the projection
matrix operatof onto the space spanned by the rows 6f X. In :
addition, since R is a projection matrix, we note that °5?11£" |

where Fyy designates the ith diagonal element of R. ‘Furthermore,

the sum of all diagonal elements of R equals N, since the trace
of 'R equals its rank.

The notion of R-optimal designs was introduced by Mitchell,

Hunter, énd Showers (1980), who considered a Bayesian ~nalysis of

the supersaturated sdreeninglproblem.‘ Assuming that uz=o and no

constant term Bo is present and making certain prior assdmptioné_

regarding 81,32,...,8K; gm was obtained as the Bayes estimate of
B. It may be noted that the coefficient matrix X, in this case,
does not include a 'column of +1's corresponding to the constant

term}Bo

14
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. The variancefcévariéhpe'matrix.of the posterior distribution
of B, as derived by Mitchell, Hunteé, and Showers, was found to
be proportional to_the métrix:lfg. Consideration of this result
lead to the following design criteria. A design fs said to be

R-optimal in a given class of"desighs if it minimizes, over all

designs in that class, the maximum diagonal element of R. This
amounts to making the diégonél_elements'of R, hence also I-R, as
nearly equal as possible (since the trace of R is fixed). Thus,
an R-bptimal design would,‘in some sense, provide equal
information on all the B 3. It follows that if.a design exists
such that all Fii are equal, that design 1s R-optimal.

In a related Bayesian treatment of this problen, Anscombe
(1963) imposed certafﬁ restrictions on the coefficient matrix X
in order to expedite‘¢alcu1ation of the posterior distribution.
One of these was that the rows of X are orthogonal. It is easy
to show that if X is é.row-orthogonal matrix, the diagonal '
elements of R are all equal, and consequently the associated
design is R-optimal. This indicates that, for certain values of
N- and K, a supersaturated R-optimal design can be readily

‘obtained by transposing a (K+1)xN (N < K) column-orthogonal

matrix (where a row of +1's is reserved as coefficients of the

. constant ternm Bo).

- The prineipal adﬁantagé to R-~optimal designs is that, under
certain reatrictions, est1mat1on of 8 is'isotropic;»lge., the
posterior variances of the Bi are all equal. ' The principal
disadvantage of such designs 'is that: ‘their general pertormance

characteristics in factor acreening experiments have not been

fully evaiuated.

?
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3.7 Search Designs

The factor screeningAprobIém éan'alsb be foroulated as a
"search" problem, following Srivastava (1975). Suppese it is
known that at most k of the K factor effects are non-zero and the
remaining (K-k) effects are zero. The goal of the search problem
is to determine the k non-zero effects and estimate then.

Srivastava developed deSigh ériteria for'obtaining search

designs in the case where no experimental error is present (i.e.,.

0220). We can write the coefficient matrix X as X=(1 D), where 1
1s an Nx1 vector of +1's and D is an NxK design Matrixl In order
to ensure that the k non-zero effects can be uniquely determined
from the K!/k! (K-k)! possible gsubsets, every subset of 2k columns
of D together with the colqmnvvector 1 must have a combined rank
of 2k+1. This implies, of course, that N > 2k+1. '

Smaller sized search designs are possible, however, under
the further restriction that the response vector y does not lie
in the intersection of two competing subspaces.. An equivalent
restriction is that no linear relationships exist among the Bi's;
In this case, X may be chosen so that no two (k+1)-dimensional
column subspaces are identical, where each subspace includes the

" column vector 1. This implies, of course, that N > k«+1.

The principal advantagé of $¢arch designsAis that

.theoretically the non-negligible effects should be identified and

estimated with reaspnable power, since this is an inherent
condition of ‘the construction of_aucﬁrdesigns..

There .are three ma jor diaadvantages of search designs. The

rfirat of these is that construction of two-level (+1) search

designs 13 extremely difficult, particularly for large-scale
simulation studies. A second disadvantage is that it is assumed
that the maximum number of non-negligible effects, k, is known.
It is unéiear. however, what 1hpact misspecification of k will

16




have on the search proéedure. Finally, the analysis of search
designs, which is based on subset regressicns, may require a
prohibitive number of computations even for moderate values of N,
K, and k.

4, SUMMARY DISCUSSION

In this paper we have presented a description and _
comparative discgssion of eight different types of supersaturated .
designs which have been suggested for use in factor screening
experiments, with application to the study of large-scale
computer simulation models. Because of the .lack of comparative
performance data, there are currently no definitiQe guidelines
for the selection and use of supersaturated screéning methods.
VNevertheless, of those methods sufveyed, the group screening
method has,been generally recommended, and we would concur with
this recommendation except when the number of runs relative to
the numbef of factors is severely limited. . In such a case, Mauro
and Burns (1984) found that the performance of group screening |
can be extremely poor, even'for detecting the large effects. 1In
such;situat;ons, then, alteknafive design strateéies, such as
systematic supersaturated design;, should be qonsidered.' From.a
pbécticél point of view, although the screening plans considered
in this paper are appealing, further theoretiéal development of
these and other methods is needed, particularly in relation to
the study of cdmputer'simulations per se.

.t
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